Activity-dependent peptidergic modulation of the plateau-generating neuron B64 in the feeding network of Aplysia.

نویسندگان

  • Hae-Young Koh
  • Klaudiusz R Weiss
چکیده

Many behaviors display various forms of activity-dependent plasticity. An example of such plasticity is the progressive shortening of the duration of protraction phase of feeding responses of Aplysia that occurs when feeding responses are repeatedly elicited. A similar protraction-duration shortening is observed in isolated ganglia of Aplysia when feeding-like motor programs are elicited through a prolonged stimulation of the command-like neuron CBI-2. Here, we investigate a cellular mechanism that may underlie this activity-dependent shortening of protraction duration of feeding motor programs. CBI-2 contains two neuropeptides, CP2 and FCAP. Previous work showed that CP2 shortens protraction duration of CBI-2 elicited programs. We show here that the same is true for FCAP. We also show that both CP2 and FCAP modulated the biophysical properties of a plateau-generating neuron, B64, that plays an important role in terminating the protraction phase of feeding motor programs. We find that prestimulation of CBI-2, as well as superfusion of CP2 and FCAP, lowered the threshold for activation of the plateau potential in B64. The threshold-lowering actions of CBI-2 prestimulation were occluded by superfusion of FCAP and CP2. Furthermore, at elevated temperature, conditions under which peptide release is prevented in Aplysia, prestimulation of CBI-2 does not lower the plateau-potential threshold, whereas superfusion of CP2 and FCAP does. Our findings are consistent with the hypothesis that peptides released from CBI-2 lower the threshold for activation of plateau potential in B64, thereby contributing to the shortening of protraction duration when CBI-2 is repeatedly activated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State dependence of spike timing and neuronal function in a motor pattern generating network.

When sustained firing of a neuron is similar in different types of motor programs, its role in the generation of these programs is often similar. We investigated whether this is also the case for neurons involved in phase transition. In the Aplysia feeding central pattern generator (CPG), identified interneuron B64 starts firing at the transition between the protraction and the retraction phase...

متن کامل

Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia.

The buccal ganglion of Aplysia contains a heterogeneous population of peptidergic, radula mechanoafferent (RM) neurons. To investigate their function, two of the larger RM cells (B21, B22) were identified by morphological and electrophysiological criteria. Both are low-threshold, rapidly adapting, mechanoafferent neurons that responded to touch of the radula, the structure that grasps food duri...

متن کامل

Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia.

Multifunctional central pattern generators (CPGs) are circuits of neurons that can generate manifold actions from a single effector system. This study examined a bilateral pair of pharyngeal motor neurons, designated B67, that participate in the multifunctional feeding network of Aplysia californica. Fictive buccal motor programs (BMPs) were elicited with four distinct stimulus paradigms to ass...

متن کامل

Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron.

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that organizes the rhythmic movements of the radula and buccal mass during feeding. Many of the cellular and synaptic elements of this CPG have been identified and characterized. However, the roles that specific cellular and synaptic properties play in generating patterns of activity are not well understood. To examine thes...

متن کامل

An input-representing interneuron regulates spike timing and thereby phase switching in a motor network.

Despite the importance of spike-timing regulation in network functioning, little is known about this regulation at the cellular level. In the Aplysia feeding network, we show that interneuron B65 regulates the timing of the spike initiation of phase-switch neurons B64 and cerebral-buccal interneuron-5/6 (CBI-5/6), and thereby determines the identity of the neuron that acts as a protraction term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2007